Preliminary communication

The synthesis, structure, and reactions of some simple unsaturated σ -hydrocarbylplatinum(II) complexes

C.J. CARDIN, D.J. CARDIN and M.F. LAPPERT

School of Molecular Sciences, University of Sussex, Brighton BN1 9QJ (Great Britain)

and K.W. MUIR

Chemistry Department, University of Glasgow, Glasgow G12 8QQ (Great Britain) (Received August 31st, 1973)

SUMMARY

Trimethyltin compounds Me₃Sn-R (R = CH=CH₂, CF=CF₂, or C≡CPh) are selective reagents for the synthesis of unsaturated hydrocarbyl derivatives such as *trans*-PtCl(R)(PPhEt₂)₂, by R/Cl exchange or oxidative addition (*e.g.*, to Pt(PPh₃)₃); single crystal X-ray analyses of two such compounds (R = CH=CH₂ or C≡CPh) show that the *trans*-influence of R has only a low sensitivity to hybridisation at carbon, with $sp^3 > sp \ge$ sp^2 .

There has been much interest in the nature of the transition metal—carbon bond with reference to unsaturated ligands, particularly in platinum chemistry, and speculation on the binding in terms of the Chatt—Dewar model. X-ray crystallographic studies have provided most of the experimental results. One approach to the problem is through study of the effect of hybridisation at carbon on the ligand *trans*-influence. In this context it is noteworthy that NMR coupling constant data on appropriate complexes have been interpreted to give an NMR *trans*-influence order of $C(sp^3) \simeq C(sp^2) > C(sp^1)$. We now present data on the synthesis, structure, and reactions of some simple vinyl, fluorovinyl, and acetylide derivatives of platinum(II).

A feature of the syntheses (A or B in Table 1) is the use of the selective reagents Me₃SnR; in increasing order of reactivity $R = CH=CH_2 < CF=CF_2 < C=CPh$. For $R = CH=CH_2$, the *trans*-monovinyl derivatives of platinum are obtained exclusively by R/Cl ligand exchange [*e.g.*, using *cis*-PtCl₂(PPhEt₂)₂], (method A), in contrast to routes employing (i) (CH₂=CH)₄Sn, which affords very poor yields, (ii) CH₂=CHMgBr from which PtBr₂P₂ was chiefly obtained, and (iii) CH₂=CHLi. For $R = CF=CF_2$ or C=CPh,

PRELIMINARY COMMUNICATION

Compound	Merhod ^a	Yield (%)	v(Pt—Cl) (Nujol) (cm [—] 1)	М.р. (°С)
trans-Pt(Cl)(CH=CH ₂)(PPhEt ₂) ₁	A	50	270	108
trans-Pt(Cl)(CF=CF_)(PPhEt_)	Α	74	285	99
trans-Pt(CF=CF ₂) ₂ (PPhEt ₂) ₂ ^b	A	68	_	109
trans-Pt(Cl)(C=CPh)(PPhEt ₂) ₂	А	90	283	108
PtCl ₁ (CH=CH ₂)(PPhEt ₁) ₁	С	90	328 and 255	175-178
PtI, Me(CH=CH,)(PPhEt,)	С	50	_	129-131
trans-Pt(CF=CF ₂)(SnMe ₃)(PPh ₃) ₂	В	75	_	171-174

TABLE 1

^a A, R/Cl ligand exchange; B, oxidative addition to $Pt(PPh_3)_3$; C, oxidative addition to Pt^{II} of MeX . or X₂. ^b Refinement of X-ray structure in progress.

method A affords good yields of either the *trans*-mono or *trans*-bis derivatives, stoicheiometrically controlled. Oxidative addition, method B, of Me₃SnR to PtP₃ or similar Pt⁰ complexes gives *cis*-PtR(SnMe₃)P₂ (R = CF==CF₂ and P = PPh₃ or PPhMe₂; R = C==CPh² and P = PPh₃ or PPh₂Me].

For platinum, X-ray analyses are available for only two unsaturated σ -hydrocarbyl derivatives, *cis*-Pt(C=C-CN)CN(PPh₃)₂³, and Pt(C₆H₉)(CH₂ COPh)(diphos), [where C₆H₉ = 1-cyclohexenyl, and diphos = 1,2-bis(diphenylphosphino)ethane]⁴, and the present results complete a series of hydrocarbyl ligands in the hybridisation states sp, sp^2 , and sp^3 . Selected bond lengths and angles for *trans*-PtCl(R)(PPhEt₂)₂ (R = CH=CH₂ or C=CPh), are shown in Figs. 1 and 2. As assessed by Pt-Cl bond lengths, the ligands -CH=CH₂ and -C=CPh exert a very similar *trans*-influence. only slightly less than for the alkyl group in *trans*-Pt(Cl)(CH₂ SiMe₃)(PPhMe₂)₂ [Pt-Cl 2.415(5) Å]⁵, but greater than that for carbene in *cis*-Pt(Cl)₂ [C(NPhCH₂)₂](PEt₃) [Pt-Cl 2.363(3) Å]⁶. We conclude that the *trans* influence of these *monohapto* hydrocarbyl ligands falls in the order $sp^3 > sp > sp^2$, but that it is not very sensitive to the hybridisation state of the ligating carbon. Studies using the acetyl group⁷ have shown that ligand electronegativity is also of little importance, the

Fig. 1. trans-PtCl(CH=CH₂)(PPhEt₂)₂: \angle Pt-C(1)-C(2) 126.9(19)°. Crystal data: orthorhombic, a 10.686(2), b 13.832(4), c 16.129(4) A, Z = 4; Pbcn (No. 60, D_{2h}^{14}); R 4.4%, R 6.0% for 1420 absorption-corrected independent diffractometric data. The vinyl group is disordered about a C_2 axis passing through Pt and Cl.

Fig. 2. trans-PtCl(C=CPh)(PPhEt₂)₂: \angle Pt-C(1)-C(2) 162(3)°, \angle C(1)-C(2)-C(3) 174(2)°. Crystal data: monoclinic, a 12.359(3), b 13.015(3), c 9.031(2) Å, β 101.65(3)°; Z = 2; P2₁, (No. 4, C₂²): R 4.7%, R 4.9% for 1883 independent diffractometric data.

trans-influence being chiefly controlled by the identity and formal charge (neutral < uninegative) of the ligating atom; note some relevant $\sigma_{\rm I}$ constants Me, -0.05; CH=CH₂, 0.15 (ref. 8); C=CH, 0.20 (ref. 9), C=CPh, 0.14 (ref. 9).

The new complexes are unsaturated in two senses, both with regard to the ligand R and to the metal. When $R = CH=CH_2$, addition takes place exclusively at the latter position for halogen (Cl₂, Br₂) and methyl halides (MeBr, MeI), (see Table 1). Another interesting reaction is shown in Scheme 1 and may relate to the *trans*-effect of the ligands R in (I). Clark and Manzer¹⁰ showed that the methyl complex (R = Me) does not react with aromatic amines; in contrast. using n-butylamine we readily obtained cationic carbene complexes from the vinyl or phenylacetylide analogues.

Scheme 1

$$PtCl(R)P_{2} \xrightarrow{AgPF_{6}} [Pt(R)(MeOH)P_{2}]^{+}PF_{6}^{-} \xrightarrow{CNC_{6}H_{4}OMe-p}$$

$$trans-[Pt(R)P_{2}(CNC_{6}H_{4}OMe-p]^{+}PF_{6}^{-} \xrightarrow{n-BuNH_{2}} trans-[(Pt(R)P_{2} \{C(NHBu-n)NHC_{6}H_{4}OMe-p\}]^{+}PF_{6}^{-}$$

$$(1) \qquad (II)$$

$$(1) R = CH=CH_{2}, P = PPhEt_{2} \text{ gives (II) (m.p. = 129^{\circ})}$$

$$(2) R = C=CPh, P = PPh_{2}Me \text{ gives (II) (m.p. = 192-194^{\circ})}$$

ACKNOWLEDGEMENTS

We thank the S.R.C. for financial support, and Engelhard Limited for the loan of platinum.

PRELIMINARY COMMUNICATION

REFERENCES

- 1 T.G. Appleton, H.C. Clark and L.E. Manzer, Coord. Chem. Rev., 10 (1973) 335.
- 2 B. Cetinkaya, M.F. Lappert, J. McMeeking and D.E. Palmer, J. Chem. Soc. Dalton, (1973) 1202.
- 3 W.H. Baddley, C. Panattoni, G. Bandoli, D.A. Clemente and U. Belluco, J. Amer. Chem. Soc., 93 (1971) 5590.
- 4 M.A. Bennett, G.B. Robertson, P.O. Whimp and T. Yoshida, J. Amer. Chem. Soc., 95 (1973) 3028.
- 5 M.R. Collier, C. Eaborn, B. Jovanović, M.F. Lappert, Lj. Manojlović-Muir, K.W. Muir and M.M. Truelock, J. Chem. Soc. Chem. Commun., (1972) 613.
- 6 D.J. Cardin, B. Cetinkaya, Engin Cetinkaya, M.F. Lappert, Lj. Manojlović-Muir and K.W. Muir, J. Organometal. Chem., 44 (1972) C59.
- 7 S.P. Dent, C. Eaborn, A. Pidcock and B. Ratcliff, J. Organometal. Chem., 46 (1972) C68.
- 8 G.B. Ellam and C.D. Johnson, J. Org. Chem., 36 (1971) 2284.
- 9 O. Exner, in N.B. Chapman and J. Shorter (Eds.), Advances in Linear Free Energy Relationships, Plenum Publishing Co., London, 1972.
- 10 H.C. Clark and L.E. Manzer, Inorg. Chem., 11 (1972) 503.